Modeling the Asymmetric Wind of the Luminous Blue Variable Binary MWC 314

A. Lobel¹, J. Groh², C. Martayan³, Y. Frémat¹, K. Torres Dozinel⁴, G. Raskin⁵, H. Van Winckel⁵, S. Prins⁵, W. Pessemier⁵, C. Waelkens⁵, H. Hensberge¹, L. Dumortier¹, A. Jorissen⁶, S. Van Eck⁶, H. Lehmann⁷

¹ Royal Observatory of Belgium,
² Geneva Obs., ³ ESO, ⁴ Univ. São João Del Rei,
⁵ Univ. of Leuven, ⁶ Univ. Libre de Bruxelles,
⁷ Thüringer Landessternwarte

Motivation

- Are there analogs of notorious LBV binary stars, i.e. like η Carinae? Long-term monitoring with HERMES of various (single) LBVs and candidate LBVs, searching for new LBV or cLBV binaries.
- MWC 314 is a very promising case because of its extended bipolar nebula and possible binarity.
- Determine accurate orbital elements of MWC 314. Provide first evidence it is a massive binary instead of low-mass B[e] star. HERMES montioring in 2009-2014 reveals it is a semi-detached massive binary system with $P_{\rm orb}$ = 60.8 d.
- Investigate and model quantitatively the asymmetric wind structure in MWC 314. Use advanced 3-D radiative transfer calculations with Wind3D to fit orbitally modulated optical He I P Cyg line profiles. Put strong contraints on winddensity and -velocity structure around primary LBV star.

MWC 314 in the upper H-R diagram

Bi-polar H\alpha nebula of MWC 314

A. P. Marston and B. McCollum: Extended shells around B[e] stars

(Marston & McCollum A&A, 2008)

197

Fig. 1. Narrow band H α image of the environments of MWC 314 showing the large east-west bipolar feature around the star. The figure is 12.5 vertically. For all figures, north is up and east to the left.

Bi-polar Hα nebula of MWC 314

A. P. Marston and B. McCollum: Extended shells around B[e] stars

197

Fig. 1. Narrow band H α image of the environments of MWC 314 showing the large east-west bipolar feature 12'.5 vertically. For all figures, north is up and east to the left.

A&A, 2008)

η Carinae LBV binary P_{orb}= 5.5 yr

Radial velocity monitoring 2009-2014

- 1 ESO-FEROS spectrum June 2009
- 20 Mercator-HERMES spectra Sep 2009 May 2014

• Orbital solution: $P_{orb} = 60.799 \text{ d}$ $e = 0.235 \quad 0.003$ $i = 72.79 \quad 13.05 \text{ deg.}$ $a = 262.58 \quad 19.52 \text{ R}_{\odot}$

Best fit of radial velocity- and V-curve

PHOEBE code <u>combined best fit</u> of RV and V

MWC 314 is massive binary system with primary filling its Roche volume

V-curve shows partial eclipses for *i* = 72.79 13.05 deg.

Primary star:

 $M_1 = 39.66 \quad 4.3 \text{ M}_{\odot}$ $R_1 = 86.80 \text{ R}_{\odot}$

Secondary star:

 $M_2 = 26.26 \quad 2.5 \text{ M}_{\odot}$ $R_2 = 20.41 \text{ R}_{\odot}$

Observed orbital phases

Primary star fills it Roche lobe

Orbital variability of He I lines in MWC 314

• All He I lines show orbitally modulated wind absorption. • Maximum wind absorption around ϕ = 0.65 – 0.85, or max. RV blueshift.

Asymmetric 3-D wind model of MWC 314

primary at apastron

MWC 314 asymmetric expanding wind model

Parametrized 3-D wind velocity & density model around primary star.

• Wind density enhancement of ρ / $\rho_{\text{sm}}\text{~3.3}$ in front of the primary's orbit.

Wind3D RT fit to He I λ 5876 orbital variability

Parametrized 3-D model reproduces enhanced absorption at φ=0.65 - 0.85.
3-D RT Wind3D includes convergence of 3-D line source function with φ.

2014 results on MWC 314

• Approved XMM-Newton program for two MWC 314 observations in eclipse phase (May 2014) and quadrature phase (Oct 2014).

• May 6 2014: significantly detected with average X-ray rate of 0.015 cts/s.

MWC 314 is a new High Mass X-ray Binary

2014 results on MWC 314

HERMES observation of 6 May 2014 in eclipse phase reveals
Discrete Absorption Components in violet wings of He I lines

 Are the DACs evidence of large-scale wind structures near L3 observed when primary LBV star is in front of the secondary?
HERMES monitoring is needed for RT modeling of DAC evolution

2014 results on MWC 314

• ESO VLT-NACO observes possible distant companion at 1.9" (~5700 AU)

• MWC 314 is possibly wide triple system (Martayan, Lobel, et al., in prep.)

Conclusions

- MWC 314 is a semi-detached massive LBV binary system (HMXB) with $Teff_1 = 18$ kK, $M_1+M_2 > 65$ M_{\odot} and $P_{orb} = 2$ m.
- Accurate orbital elements: e=0.23, i = 73 13, a₁+a₂≅1.22 AU. Accurate stellar parameters from combined RV- and V-curve: R₁ = 86.80 R_o and R₂ = 20.41 R_o (Teff₂ = 6200 K).
- SED of MWC 314 identical to P Cygni, signaling radiatively accelerating wind with r⁻² smooth wind density structure.
- Optical emission lines and P Cyg line variability are orbitally modulated. He I P Cyg lines show wind outflow > 1200 km/s.
- We develop 3-D model of the asymmetric wind structure around the primary. Detailed fits to He I P Cyg absorption using Wind3D determine density increase of ~3.3 above smooth wind that leads the orbital path of the primary star.